
Rapid Antimicrobial Susceptibility Testing using Machine Learning

ID# 2020-5043

Schematic of the rapid AST system

Technology Summary

Roughly 50% of antibiotic treatments are started with the wrong antibiotics. Rapid antimicrobial susceptibility testing (AST) is urgently needed to assist caregivers in the timely administration of the correct treatments. A lack of reliable and accurate rapid AST contributes to the spread of antimicrobial-resistant infections, which the WHO considers to be the largest global health threat of the 21st century, as misuse and overuse of broad-spectrum antibiotics result from gold-standard AST methods taking too long (>16 h). A team of Penn State inventors have developed a dynamic laser speckle imaging technique to rapidly quantify the response of bacteria to antibiotics. Time-resolved imaging results are analyzed using a machine learning algorithm – trained and validated using the gold-standard AST method – to predict the minimum inhibitory concentration (MIC) of antibiotics.

Application & Market Utility

Current tests serve some hospitalized patients rather well; however, there is a significant unmet need for rapid and decentralized AST for acute infections in outpatient clinics. In all settings, rapid point-of-care testing is particularly important in patients with serious bacterial infections or those with immunodeficiencies. Our rapid AST technology is low-cost, label-free, and simple to use. It has been shown to predict MIC of antibiotics with high accuracy comparable to broth microdilution (gold-standard), but in much less time (1-4 h, depending on the antimicrobial).

Next Steps

Seeking research collaboration and licensing opportunities.

TECHNOLOGY READINESS LEVEL

4-7

Seeking

Investment | Licensing | Research

Keywords

- Antiobiotic Resistance
- Rapid Tests
- Point-Of-Care (POC) Tests
- Artificial Neural Networks
- Speckle Imaging

Researchers

Aida Ebrahimi

Assistant Professor of Electrical Engineering Website

Zhiwen Liu

Professor of Electrical Engineering Website

Jasna Kovac

Casida Development Professor for Food Safety Website

Other Researchers

Chen Zhou, Keren Zhou

Originating College

College of Engineering, College of Agricultural Sciences

Office of Technology Management Contact

Douglas Gisewhite drg206@psu.edu 814.865.6961

