
Fracture Conductivity Tuning Technique to Improve Heat Extraction in Enhanced Geothermal Systems

ID# 2022-5501

Temperature of produced fluid for different simulation cases using special proppants.

Technology Summary

Penn State researchers developed a 3D mathematical model optimizing EGS performance using a Fracture Conductivity Tuning Technique (FCTT). This technique can be used to increase heat extracted from a reservoir over its' lifetime by increasing fracture hydraulic conductivity (FHC) in high temperature zones and decreasing FHC in low temperature zones of a reservoir, thereby preventing early thermal breakthrough to a production well. FCTT is based on use of special proppants, either on their own or in combination, with regular proppants with temperature sensitive solubility designed to optimize heat flow/temperature of produced fluids over time. The special proppants are coated with a resin which can deform with temperatures thereby adjusting FHC; at high temperatures the proppant retains its original unexpanded shape, at lower temperatures they expand diminishing FHC. Simulations indicated that use of the FCTT over a 50-year period improved cumulative heat extraction by at least 39% in a geothermal reservoir by increasing the temperature of the produced fluid.

Application & Market Utility

- Increasing geothermal power production through design of more efficient subsurface fracture networks.
- Development of more effective subsurface heat flow geometries in a geothermal reservoir.
- The geothermal energy market was valued at \$6.6 billion in 2021 and is expected to reach \$9.4 billion by 2027 at a CAGR of 5.9%
- Increased electricity demand using sustainable energy sources is the major factor driving growth.

Next Steps

Seeking licensing and research collaboration opportunities.

TECHNOLOGY READINESS LEVEL 5/6 Seeking Licensing | Research **Keywords** • Enhanced geothermal systems • Tunable fracture conductivity • Production efficiency Flow shortcut Researchers Arash Dahi Taleghani, PhD Professor of Petroleum Engineering **Other Researchers Originating College** College of Engineering Office of Technology Management Contact

Douglas Gisewhite

drg206@psu.edu

814.865.6961

Penn State is an equal opportunity, affirmative action employer, and is committed to providing employment opportunities to all qualified applicants without regard to race, color, religion, age, sex, sexual orientation, gender identity, national origin, disability or protected veteran status.