Bioprinted Pancreas-on-a-Chip Platform for Drug Response Evaluation

ID# 2016-4547

Technology Summary

This technology describes a chip that can be used to evaluate pancreatic function and response to TD1 pharmaceuticals. The chip acts as a perfusable human pancreas model with embedded vascularization. The design includes a microfluidics chamber, a bioprinted extracellular matrix, and adipose-derived stem cells directed towards a beta-cell fate. A lumen is formed within the extracellular matrix, which can be perfused with cells, culture media, or other perfusate. This “organ on a chip” recreates the key features of a pancreatic microenvironment and can be used for screening drugs that regulate pancreatic function.

Application & Market Utility

Real-time observation of cell morphology and drug response. Keeps tissue intact for testing various TD1 drugs. Capable of long-term perfusion (up to 26 days), First successful culture of pancreatic islets in a 3D vascularized form. First successful 3D bioprinting system for pancreatic islets.

Next Steps

Seeking licensing with biomedical industry partner for commercialization of innovation.

Invent Penn State is a Commonwealth-wide initiative to spur economic development, job creation, and student career success. Invent Penn State blends entrepreneurship-focused academic programs, business startup training and incubation, funding for commercialization, and university-community collaborations to facilitate the challenging process of turning research discoveries into valuable products and services that can benefit Pennsylvanians and humankind. Learn more at invent.psu.edu.