Active Noise Isolation for Tunneling Applications (ANITA)
ID# 2017-4632

Technology Summary
The present invention, ANITA, includes a method of removing vibration driven noise from a signal in scanning probe microscopes (SPMs). ANITA allows for a SPM itself to remove vibration driven noise by using the signal from an accelerometer to measure the vibration driven noise and software to correlate the accelerometer’s signal with noise from the SPM. This technology applies to all types of SPMs, requires minimal new technology, and is easily integrated into both new and existing systems. Furthermore, ANITA requires no major instrumental modifications, and is suitable for the SPMs working in a noisier environment, e.g. in the presence of active refrigeration systems.

Application & Market Utility
The usefulness of SPMs centers on its ability to extract electronic information from materials with sub-angstrom level precision. Although a variety of other vibration cancellation systems have been developed for SPMs, none have been widely adopted due to their complexity, expense, and narrow range of use. The present invention addresses these needs while successfully removing the effect of vibration on the performance of SPMs.

Next Steps
The research team is seeking licensing and research collaboration opportunities.

Schematic of ANITA

TECHNOLOGY READINESS LEVEL 1-3

Seeking
Investment | Licensing | Research

Keywords
noise isolation
active noise cancellation
vibration cancellation
scanning tunneling microscopy

Researchers
Eric Hudson
Associate Professor of Physics
Online Bio
Website

Lavish Pabbi
Graduate Student

Originating College
Eberly College of Science

Office of Technology Management Contact
Rokita, Joseph
jjr152@psu.edu
814-863-6336

Penn State is an equal opportunity, affirmative action employer, and is committed to providing employment opportunities to all qualified applicants without regard to race, color, religion, age, sex, sexual orientation, gender identity, national origin, disability or protected veteran status.