# Current-Based Resonant Power Delivery for Extended-Range Pwr Transfer

# ID# 2016-4443





Example power transfer setup

# **Technology Summary**

This invention comprises a new current-based resonant power delivery technique that switches the series-connected Rx LC-tank of the inductive link in a unique fashion to effectively use it as a current source. Therefore, an optimal AC-DC voltage conversion with high voltage conversion efficiency (greater than one) can be achieved in the Rx side by only adding a single switch to the conventional inductive link. This helps to extend the range of inductive power transmission, particularly for applications that involve low-power consumption in the Rx side, or require a large load voltage.

# Application & Market Utility

Inductive power transmission has extensively been used over the past decades for contactless energy transfer to power a device or recharge its battery. It has covered a wide range of applications with different power requirements from  $\mu W$  to kW. Some examples include powering radio frequency identification (RFID) tags and implantable medical devices (IMDs), and recharging batteries of handheld mobile devices and electric vehicles.

# **Next Steps**

Technology is protected by a U.S. patent. The research team seeks licensing opportunities.

# **TECHNOLOGY READINESS LEVEL**

4-7

#### Seeking

Investment | Licensing | Research

#### **Keywords**

- Inductive links
- wireless power transmission
- near field
- power management
- power transmission efficiency

#### Researchers

#### Mehdi Kiani

Associate Professor of Electrical Engineering Online Bio

Website

## Hesam Sadeghi Gougheri

Graduate Student

### **Originating College**

College of Engineering

# Office of Technology Management Contact

Rokita, Joseph jjr152@psu.edu 814-863-6336

