
Graphene/2D-Metal Hybrids for Improved Sensor Performance

ID# 2018-4864

SHG of hybrid structures

Technology Summary

The technology is based on creating atomically thin metals by sandwiching the metal atoms between a substrate and graphene. The unique structure of the metal atoms creates a strong plasmon resonance in the visible/near-IR wavelengths and extreme non-linear optical properties that are >2000x better than gold nanoparticles. These materials will enable unprecedented sensitivity and precision in spectroscopic detection of chem/bio molecules. Beyond the optical properties, this technology will enable new forms of plasmonic metasurfaces, plasmonenhanced catalysis, and even next-generation quantum technologies.

Application & Market Utility

This technology is the active surface of specially engineered "microscope slides" that is proven to boost the spectroscopic signal of viruses and molecules by 100-1000x, enabling rapid and reliable identification of biological and chemical molecules for health, environment, and defense applications.

Next Steps

The researchers are seeking licensing opportunities and research collaboration.

TECHNOLOGY READINESS LEVEL

4-7

Seeking

Investment | Licensing | Research

Keywords

- 2D materials
- biosensor
- chemical sensor
- spectroscopy
- Surface-enhanced Raman spectroscopy

Researchers

Joshua A. Robinson

Associate Professor of Materials Science and Engineering

Online Bio

Natalie C. Briggs

Graduate Researcher

Kenneth Knappenberger

Professor Website

Other Researchers

Tian Zhao

Originating College

College of Earth and Mineral Sciences

Office of Technology Management Contact

Rokita, Joseph jjr152@psu.edu 814-863-6336

